underwater welding

Topics: Welding, Arc welding, Gas metal arc welding Pages: 6 (1597 words) Published: October 6, 2013
UNDERWATER WELDING
INTRODUCTION
The fact that electric arc could operate was known for over a 100 years. The first ever underwater welding was carried out by British Admiralty – Dockyard for sealing leaking ship rivets below the water line. Underwater welding is an important tool for underwater fabrication works. In 1946, special waterproof electrodes were developed in Holland by ‘Van der Willingen’. In recent years the number of offshore structures including oil drilling rigs, pipelines, platforms are being installed significantly. Some of these structures will experience failures of its elements during normal usage and during unpredicted occurrences like storms, collisions. Any repair method will require the use of underwater welding. CLASSIFICATION

Underwater welding can be classified as
1) Wet Welding
2) Dry Welding
In wet welding the welding is performed underwater, directly exposed to the wet environment. In dry welding, a dry chamber is created near the area to be welded and the welder does the job by staying inside the chamber.

WET WELDING
Wet Welding indicates that welding is performed underwater,
directly exposed to the wet environment. A special electrode is used and welding is carried out manually just as one does in open air welding. The increased freedom of movement makes wet
welding the most effective, efficient and economical method. Welding power supply is located on the surface with connection to the diver/welder via cables and hoses.

In wet welding MMA (manual metal arc welding) is used.

Power Supply used

: DC

Polarity

: -ve polarity

When DC is used with +ve polarity, electrolysis will take place and cause rapid deterioration of any metallic components in the electrode holder. For wet welding AC is not used on account of electrical safety and difficulty in maintaining an arc underwater.

Power
Supply

Electrode Holder

Electrode
work

Knife Switch
The power source should be a direct current machine rated at 300 or 400 amperes. Motor generator welding machines are most often used for underwater welding in the wet. The welding machine frame must be grounded to the ship. The welding circuit must include a positive type of switch, usually a knife switch operated on the surface and commanded by the welder-diver. The knife switch in the electrode circuit must be capable of breaking the full welding current and is used for safety reasons. The welding power should be connected to the electrode holder only during welding.

Direct current with electrode negative (straight polarity) is used. Special welding electrode holders with extra insulation against the water are used. The underwater welding electrode holder utilizes a twist type head for gripping the electrode. It accommodates two sizes of electrodes. The electrode types used conform to AWS E6013 classification. The electrodes must be waterproofed. All connections must be thoroughly insulated so that the water cannot come in contact with the metal parts. If the insulation does leak, seawater will come in contact with the metal conductor and part of the current will leak away and will not be available at the arc. In addition, there will be rapid deterioration of the copper cable at the point of the leak.

Hyperbaric Welding (dry welding)
Hyperbaric welding is carried out in chamber sealed around the structure o be welded. The chamber is filled with a gas (commonly helium containing 0.5 bar of oxygen) at the prevailing pressure. The habitat is sealed onto the pipeline and filled with a breathable mixture of helium and oxygen, at or slightly above the ambient pressure at which the welding is to take place. This method produces high-quality weld joints that meet Xray and code requirements. The gas tungsten arc welding process is employed for this process. The area under the floor of the Habitat is open to water. Thus the welding is done in the dry but at the hydrostatic pressure of the sea water surrounding the Habitat....

References: 1) D. J Keats, Manual on Wet Welding.
2) Annon, Recent advances in dry underwater pipeline welding, Welding Engineer, 1974.
3) Lythall, Gibson, Dry Hyperbaric underwater welding, Welding Institute.
4) W.Lucas, International conference on computer technology in welding.
5) Stepath M. D, Underwater welding and cutting yields slowly to research, Welding Engineer, April
1973.
6) Silva, Hazlett, Underwater welding with iron – powder electrodes, Welding Journal, 1971.
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • WELDING Essay
  • Essay about underwater welding
  • Site Tig Welding to Hydrocarbon Lines Confined Space Essay
  • Adventure Underwater Essay
  • Osha Welding, Cutting, Brazing Cfr 1910 Essay
  • Principles of welding Essay
  • My Future Career in Welding Essay
  • Global Welding Consumables Market Essay

Become a StudyMode Member

Sign Up - It's Free